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Abstract

A recently developed algorithm for nonlinear system per-

formance analysis has been applied to an F16 aircraft to

begin evaluating the suitability of the method for aerospace

problems. The algorithm has a potential to be much more

e�cient than the current methods in performance analysis

for aircraft. This paper is the initial step in evaluating this

potential.
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1 Introduction

Real world systems are necessarily nonlinear and the
range in which these systems can operate safely and
within speci�cations is of paramount interest to both
system designers and their eventual users. Typi-
cally, controllers are designed and analyzed using lin-
ear methods at di�erent operating conditions. In the
�nal design stages, the nonlinear system is analyzed
through repetitive simulation to determine its actual
performance. The currently accepted practice in in-
dustry and elsewhere is to select a number of poten-
tial operating parameters, select their operating range,
and then randomly simulate the system [1]. The pro-
cess is known as Monte Carlo simulation. In order to
ensure that the full range of the system's behavior is
covered, a very large number of simulations must be
performed. In a typical scenario of an aircraft landing,
5 weight conditions, 5 center of gravity locations, and
2 
ap settings are considered. The number of Monte
Carlo simulations associated with this scenario, in or-
der to ensure su�cient exploration of noise and dis-
turbance space, is 5000. This scenario constitutes a
small part of the operational envelope of an airplane,
although an important one. As the number of parame-
ters allowed to vary increases, the problem of checking
performance robustness of a realistic system with this
method grows exponentially in size and complexity.
Any methodology that would provide for a reduction
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in the number of simulations necessary to ascertain ro-
bust performance of an airplane would be very useful
in both control system development and in assisting
the certi�cation process. In recent work, we have de-
veloped a numerical tool for nonlinear robust perfor-
mance analysis that has the potential to reduce the
number of simulations necessary to assess aircraft per-
formance and thus ameliorate the exponential growth
of the problem [5]. Emphasis was placed on creat-
ing a computationally sound tool, requiring only in-
formation usually available on the process being an-
alyzed. This analysis tool only requires a simulation
program for the plant. The development in many re-
spects parallels that of robustness analysis for linear
systems. We would like to ascertain the suitability of
the developed algorithm for solving problems encoun-
tered in aerospace applications. As the �rst test of
the methodology, the algorithm is applied to an F16
�ghter aircraft executing a maneuver to determine the
worst deviation from the trajectory.

For linear time invariant (LTI) systems with com-
plex, structured uncertainty, analysis of robust per-
formance can be reduced to searching for the solution
of a set of algebraic equations which give bounds on
the achievable performance. One is thus able to �nd
computationally e�cient solutions, such as the power
algorithm for the � lower bound, without doing an ex-
plicit parameter search involving repeated simulation.
This works because the system is linear and the per-
formance and uncertainty descriptions are chosen so
as to give computationally attractive solutions, even
for large problems.

Performance analysis for nonlinear systems is di�-
cult due to the wide variety of behavior and structures
which can occur. The algorithm summarized in this
paper addresses the lower bound on the worst case per-
formance. We will consider the problem of robust tra-
jectory tracking: given a nominal trajectory for an un-
certain, noisy nonlinear system, a feedback controller
which stabilizes the trajectory and a description of the
desired performance, �nd a lower bound on the worst
case performance. The numerical tool we employ is a
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power algorithm to solve a speci�c two point boundary
value problem that is similar in computational nature
to the power algorithm for the lower bound of �, and
so does not rely on classical descent techniques.
The rest of this paper proceeds as follows. In Section

2 a brief summary of the algorithm is given. In Section
3 the F16 airplane model is described, the trajectory
tracking problem is set up, and the results of applying
the algorithm are discussed. This is an initial applica-
tion of the recently developed algorithm to an aircraft
problem. The ability of the algorithm to handle tabu-
lar data, a relatively high number of parameters, and
the class of nonlinearities present in aircraft, all typical
characterizations of an aircraft problem, was unknown
until this application. The last section concludes the
paper with a discussion of results, issues encountered
in this application, and new work.

2 Brief Summary of Robust

Tracking Problem Method

Many nonlinear analysis problems of engineering in-
terest can be reduced to a problem of tracking a nom-
inal trajectory. Be it an airplane taking a turn or an
idling engine going through a sudden change in load,
the designer has in mind an appropriate path, to be
completed in a �nite predetermined time, and builds
his control system accordingly. Since the real system
is not exactly the one used for the design, and since it
is also subject to noise, the system will not follow the
intended trajectory. However, the design can still be
considered successful if it remains close enough to it in
an appropriate norm.
In this paper we consider a restricted version of this

problem. The original presentation of the algorithm's
development and a more detailed discussion can be
found in [5]. Our performance measure will be the 2-
norm of the error signal (i.e. the di�erence between
the nominal and the actual trajectory). If needed,
the error signal can be weighted by a multiplicative
time function. Noise signals will be bounded in the
2-norm. Unmodeled dynamics will be norm bounded
operators. The only information available on these op-
erators is their induced 2-norm. We will not restrict
the operators to be causal. The system equations will
be allowed to depend on a set of real parameters vary-
ing in closed intervals. The initial conditions for some
or all of the state variables will also be allowed to vary
in given closed intervals.
To simplify the notation we will work in the follow-

ing with a system having one uncertain parameter, one
unmodeled norm bounded component and one noisy
input. All the results presented, however, generalize

naturally.

Let u be the noise signal perturbing the system, and
let y be the error signal, that is the di�erence between
the nominal and the actual trajectories. Denote by v

the output of the uncertain dynamical block, and � the
real uncertain parameter. The equations describing
the system will then be

_x = f(x; u; v; �; t)

y = g(x; u; v; �; t)

z = h(x; u; v; �; t)

with the following constraints

j�j � 1

kuk2 = 1

kvk2 = kzk2: (1)
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Figure 1: Schematic representation for the robust tra-
jectory tracking problem.

Figure 1 gives a schematic representation of these
equations. In order to determine how close the nomi-
nal trajectory is being tracked we need to compute

max
j�j�1; kuk=1; kvk=kzk

kyk: (2)

The preceeding problem is a nonlinear constrained op-
timization problem. It is in general non-convex and
some of the optimization variables live in an in�nite
dimensional space. An exact solution is thus out of
the question: we have to settle for upper and lower
bounds. Note that this is true even if the system is
linear: the complexity of the problem does not come
just from nonlinearities in the system but from the
nonlinear nature of the optimization index and the
constraints. In the following section we brie
y sum-
marize the algorithm for computing a lower bound,
based on the search for locally worst case signals.
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2.1 Necessary Conditions for Worst
Case Signals

Any evaluation of the function kyk2, for valid values
of the parameters and signals is a lower bound on (2).
So a simple way of getting lower bounds is through
repeated simulation of the system for di�erent val-
ues of the uncertain signals in the model. This is
at present the state of the art of nonlinear analysis
as applied in industry: good simulation models are
developed and designs are tested through extensive
simulation, usually selecting the uncertain signals at
random. This approach is practical, since it requires
information from the plant that is usually available,
and often gives reasonable results. The algorithm ap-
plied in this paper improves on this approach without
sacri�cing in simplicity or in the generality of the in-
formation required. Instead of simulating at random
points, the algorithm looks for points that are good
candidates for being local maximums and this search
is conducted through a \power-like" method. The ro-
bust trajectory tracking problem can be written as a
standard Euler-Lagrange optimization problem. For
a detailed development the reader is referred to [5].
The robust trajectory tracking problem is equivalent
to optimizing the performance index

J =

Z tf

ti

Ldt =
1

2
kyk2 (3)

for the system verifying the di�erential equation

_x = f(x; u; v; x�)

_xu =
1

2
u�u

_x� =
1

2
(z�z � v�v)

_x� = 0;

(4)

where

y = g(x; u; v; x�)

z = h(x; u; v; x�)

with given initial conditions

x(to) = x0; xu(to) = 0; x�(to) = 0; x�(to) = � (5)

and �nal conditions

xu(tf ) =
1

2
; x�(tf ) = 0: (6)

So a set of signals u, v, and a parameter � achieve the
worst case value of the performance index J only if

there exists � = (�x; �u; ��; ��) 2 Rn�[to;tf ], satisfy-
ing

_� = �

�
@f

@x

�t

��

�
@h

@x

�t

z�� �

�
@g

@x

�t

y

(7)
_�u = 0 (8)
_�� = 0 (9)
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with �nal state conditions

�(tf ) = 0

��(tf ) = 0 (11)

and satisfying the following alignment conditions�
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(12)

and such that the initial state veri�es:

��(ti) = 0; or

8<
:

� = �1
and

��(ti) < 0
or

8<
:

� = 1
and

��(ti) > 0:
(13)

Remarks: Equations (7) and (10) describe a linear
time varying dynamical system whose inputs are the
(scaled) outputs of the original system. We will refer
to this system as the adjoint or co-system.
Equations (12) can be interpreted as an alignment

condition between the outputs of the adjoint system
and the inputs to the original dynamical system. Thus,
these equations describe two dynamical systems inter-
connected in a feedback loop.
Equation (13) states that at an optimum, either the

derivative of the performance index with respect to the
value of the parameter is zero, or it is negative and the
parameter is at the lower end of the interval or it is
positive and the parameter is at the higher end of the
interval.
If we consider both the equations for the system, the

co-system, and the alignment conditions together, we
have a two point boundary value problem, i.e. a set
of di�erential equations with boundary conditions at
two distinct time instants.
Several methods for solving the general two point

boundary value problem have been devised and thor-
oughly studied. (See for example [3], [2]). However,
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the standard methods are based on gradient descent.
In what follows we present a method to solve this par-
ticular instance of the two point boundary value prob-
lem that avoids the problems of gradient descent meth-
ods. The algorithm is a generalization of the power
algorithm for the lower bound of �. In fact when ap-
plied to linear systems the proposed algorithm reduces
to the standard power algorithm for � as described by
Young and Doyle [6].

2.2 A Power Algorithm

For a trajectory that meets the necessary conditions
for a critical point, the Euler Lagrange conditions can
be naturally separated into (i) a dynamical system
with initial conditions only; (ii) a dynamical system
with �nal conditions only; (iii) two sets of aligning
conditions between the inputs and outputs of the two
systems; and (iv) conditions relating the initial con-
ditions of both systems. It is also important to note
that the adjoint system depends on the trajectory of
the original one.
So, if the perturbations signals achieve the neces-

sary conditions, the following composition of mappings
yields the identity map:

� Simulate the system along the current inputs.

� Compute the co-system along the current trajec-
tory, and simulate it backwards in time.

� From the alignment conditions in (12) compute
updated values for u, v, �u, and ��.

� Update the value of x� with the following rule:

� = x� + ��(to)

x� =

8<
:

�1 � < �1
� �1 � � � 1
1 � > 1:

Denote this composition by

(u1; v1; �1; �1u; �
1
�) = �(uo; vo; �o; �ou; �

o
�): (14)

Remarks: From the �rst equation in (12), using
the old values of �� and of the state trajectory we
can compute u�u. Since �u is a scalar, and we know
the norm of u we can separate this product into its
components.
From the second equation in (12) we can compute��
@h
@v

�t
z � v

�
��. Since we know the norm of v, and

the value of
�
@h
@v

�t
z we can determine v and �� by

intersecting the line passing through the origin and

with direction
��

@h
@v

�t
z � v

�
with the circle centered

at
�
@h
@v

�t
z and with radius kvk.

When solving the di�erential equations with a nu-
merical integrator, we will obtain values for all the sig-
nals at a �nite number of time instants. The number of
operations necessary to the signal updating described
grows linearly with the number of time instants.
The following iterative algorithm searches for �xed

points of �, by evaluating it repeatedly.

1. Simulate the system with u = 0, v = 0, x� = 0.
Use the time steps generated by the simulation
routine as a time axis.

2. Select random values for u along the time axis.
(the signal is to be interpolated in between time-
steps). Normalize u to �t the norm requirement.
Set vo = 0, and xo� = 0. Set �o� = 1.

3. Repeat

(ui+1; vi+1; xi+1� ; �i+1u ; �i+1� ) := �(ui; vi; xi�; �
i
u; �

i
�)

4. until

(ui+1; vi+1; xi+1� ; �i+1u ; �i+1� ) = (ui; vi; xi�; �
i
u; �

i
�)

Remarks: If the algorithm converges, it converges
to a �xed point of � and thus to a set of signals that
meet the necessary conditions for a critical point.
In order to prove convergence we would have to

prove that � is a contraction around �xed points. That
has not been proved even for the simpler case when the
system is linear. Since we are interested in a prepon-
derance of experimental evidence that this algorithm
does in fact work with aerospace systems, we apply it
to an F16 �ghter executing a climb and turn maneuver
as our initial example.

3 Application to an F16

We want to determine whether the algorithm, summa-
rized in the previous section, is suitable for aerospace
applications. As a �rst step, the algorithm's ability
to handle a model that includes a number of nonlinear
equations and tabular data with a relatively high num-
ber of parameters that are allowed to vary, all charac-
teristic of a typical aircraft, must be ascertained.
The aircraft used in this example application is an

F16. The aerodynamic model is a reduced version of
the full model obtained in wind tunnel tests at NASA
Langley in 1979 [4]. It consists of tabular data with
typical interpolation routines and nonlinear equations
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of motion. The engine model is that of an afterburning
turbofan. The airplane model utilized in this applica-
tion is de�ned for speed range of up to Mach 0.6 and
angle of attack interval between -10 and 45 degrees.
The model includes four traditional controls (elevator,
aileron, rudder, and throttle) and thirteen states (ve-
locity vector, attitude angles, angular velocities, nav-
igational position, altitude, and engine power). Fur-
thermore, the aerodynamic coe�cients are built up in
a traditional way and the equations of motion are full
nonlinear 
at earth equations.

Several di�erent trajectories were analyzed, but due
to lack of space only one is presented as an illustrative
example. The trajectory is a constant climb, constant
g coordinated turn. The e�ective center of gravity (cg)
location is set at 0.2�c, the x-coordinate of the reference
cg position normalized by the maximum aerodynamic
chord length (�c) of the wing, which makes the aircraft
statically stable. The performance variables were cho-
sen to be the turning radius error and the altitude
error, both measured from a nominal condition char-
acterized by absence of any exogenous disturbances as
well as any uncertainty or parameter variation. The
aircraft initiates the maneuver at 10,000 ft 
ying at
500 fps. The F16 is then trimmed to climb at 50 fps
while maintaining a 4.5 g coordinated turn. This is the
aircraft's nominal trajectory as illustrated in �gure 2
(solid line).

During the maneuver the aircraft is subjected to at-
mospheric turbulence in vertical, horizontal, and lat-
eral directions modeled by Van Karman spectra and
implemented by Dryden �lters [1]. The magnitude of
the allowable gusts is limited to 50 fps. In addition,
seven parameters in the model are allowed to vary in-
dividually on a closed interval. These parameters in-
clude variation in cg position as well as uncertainty in
the aerodynamic forces and moments along each axis.
For the example presented in this paper the numerical
values for the variations are as follows. Cg variation is
on the interval between 0.195�c and 0.205�c. The aero-
dynamic force coe�cients are allowed to vary �2.5%
for Cx, �1.5% for Cy, �3% for Cz. The aerodynamic
moment coe�cients vary �5% individually for rolling
(Cl), pitching (Cm),and yawing (Cn) moments.

The algorithm is asked to �nd the combination of
parameters and wind gusts that produce the largest
norm of the performance variable vector, i.e. turning
radius and altitude error. The worst case combination
produced by the algorithm gives the value of each of
the parameters at the end point of the allowable in-
terval of variation, eventhough the entire interval is
searched. Numerically these are Cg at 0.195�c, Cx at
102.5% from nominal, Cy at 98.5%, Cz at 97%, Cl at
95%, Cm at 95%, and Cn at 105%. The resulting 2-

norm of the performance variables is 1260 ft, which is
given for future comparison rather than physical mean-
ing.

The model simulation used by the algorithm was
built up in a Simulink diagram, �gure 6. The be-
havior of the airplane under the worst case parameter
variation selected by the algorithm is illustrated in �g-
ures 2-5. The solid line in all the �gures represents the
nominal trajectory while the dashed line represents the
perturbed trajectory.

To compare with more traditional ways of evaluating
nonlinear system behavior, Monte Carlo simulations
were run. For each parameter the endpoints of the in-
terval of variation were selected as allowable values. A
system simulation with random turbulence subjected
to the same restrictions as those imposed by the al-
gorithm, i.e. random noise with normal distribution
and limited energy input to Dryden �lters, is run for
each possible combination of parameter values, 128 in
this case. For each of these parameter combinations
10 simulations are performed. The resulting 2-norm
of each simulation is plotted in �gure 7. The �gure
shows the 2-norm of the performance vector for each
of the simulations as well as the worst case 2-norm. A
total of 1280 simulations were performed.

As can be seen from �gure 7, the 2-norm of the
worst case parameter combination with atmospheric
winds shaped by the algorithm is indeed larger than
any combination of parameters with random atmo-
spheric winds. The two vertical lines demarcate the
interval that corresponds to the combination of pa-
rameters selected by the algorithm as the worst case.
Thus, the algorithm gives us a combination of param-
eters that is particularly bad. While this combination
is not unique, as is evident from the �gure, it does pro-
vide us with a better lower bound on the worst case
behavior of the airplane for the allowable set of pa-
rameter variations than the Monte Carlo method. In
terms of computational e�ciency, the worst case al-
gorithm is at least four times faster than the Monte
Carlo simulations in this particular case. It is impor-
tant to note that both the algorithm and Monte Carlo
simulations provide only a lower bound. It is possi-
ble that even worse performance might be achieved
by some other combination of parameters and atmo-
spheric turbulence. There are currently no methods
that compute the global maximum for a problem of
this complexity.

4 Conclusions and Future Work

An application of a recently developed algorithm for
robust performance assessment of nonlinear systems
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to an F16 aircraft is presented in this paper. The
algorithm successfully handles a 13 state nonlinear
aero/propulsion model based on wind tunnel data in
tabular form that is subjected to atmospheric turbu-
lence and has a relatively high number of uncertain
parameters. These results con�rm the applicability of
the nonlinear robust performance analysis method [5]
to aircraft performance problems.
In order to better match the needs of the aircraft

designers and of the certi�cation process, several is-
sues must still be addressed. The �rst issue of interest
is comparison between bounded energy and stochas-
tic noise signals. The current practice in industry
is to rely on stochastic performance measurements.
Furthermore, for the certi�cation the FAA requires
stochastic performance measures. Future research will
focus on incorporating the stochastics into the algo-
rithm.
Certi�cation guidelines also establish probability

distributions for uncertain parameters. We believe this
can be incorporated into this method by subdividing
the distribution curve into intervals and evaluating the
worst case performance of the system while the pa-
rameter falls into that interval is evaluated. We are
currently studying this point.
Although this algorithm cannot completely replace

the Monte Carlo simulations necessary for the certi�-
cation process, it does enhance the simulation results.
It answers the question of how bad can performance
of a system really get and under what circumstances
would that behavior occur. This answer is extremely
valuable during the development of control laws since
it can be done cheaply in comparison to a large num-
ber of Monte Carlo simulations and in parallel with
linear robustness analysis.

Acknowledgements

The authors would like to thank Dr. Eugene Morelli
of NASA Langley for his help in obtaining the F16
model and Dr. Richard Murray of Caltech for help-
ful comments,suggestions, and lots of encouragement.
This work was partially supported by NASA, NSF and
AFOSR.

References

[1] Federal Aviation Administration. Advisory circu-
lar: Automatic landing systems, January 1971. AC
No 20-57.

[2] U.M Ascher, R.M. Mattheij, and R.D. Russel. Nu-
merical Solution of Boundary Value Problems for

Ordinary Di�erential Equations. Prentice Hall,
1988.

[3] H.B. Keller. Numerical methods for two point

boundary-value problems. Blaisdell, 1968.

[4] B. L. Stevens and F. L. Lewis. Aircraft Control

and Simulation. John Wiley & Sons, Inc., 1992.

[5] J. Tierno, R. Murray, and J.C. Doyle. An e�-
cient algorithm for performance analysis of non-
linear control systems. In Proceedings of the 1995

American Control Conference, 1995.

[6] P. M. Young and J. C. Doyle. Computation of �
with real and complex uncertainties. In Proceedings
of the 29th Conference on Decision and Control,
pages 1230{1235. IEEE, 1990.

6



−2000
−1000

0
1000

2000

−2000

−1000

0

1000

2000
1

1.05

1.1

1.15

1.2

x 10
4

N−S position, ftE−W position, ft

A
lt
it
u

d
e

, 
ft

Figure 2: Spacial view of the trajectory.
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Figure 3: Ground track of the trajectory.
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